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Abstract. We study the propagation of a lateral current density front in a bistable semiconductor system
with S- or Z-shaped current-voltage characteristics. It is demonstrated that an external load circuit in-
troduces a global coupling which leads to positive or negative feedback upon the front dynamics in S- or
Z-type systems, respectively. This results in accelerated or decelerated front motion. The type of feedback
can be reversed if the system is operated in an active external circuit with negative load resistance. Double
barrier resonant tunneling diodes (DBRT) and heterostructure hot electron diodes (HHED) are used as
examples of Z- and S-type systems, respectively.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 72.20.Ht High-field and nonlinear
effects – 85.30.-z Semiconductor devices

1 Introduction

Travelling front patterns in bistable and excitable active
media [1] represent a universal phenomenon which occurs
in nonlinear spatially extended systems of different nature,
ranging from physics [2–7] and chemistry [8] to biology
and ecology [9,10]. In many cases in addition to a local
diffusive coupling such systems also experience a global
coupling. Generally, global coupling is related to exter-
nal constraints imposed upon the system’s dynamics. In
the presence of global coupling, some dynamic variables
of the active media (e.g., the global excitation level) de-
pend on the spatially averaged parameters of the travelling
pattern. Recently, global coupling has been widely recog-
nized as an important factor for spatio-temporal dynam-
ics in spatially extended systems. It has been studied in
different models, e.g., Landau-Ginzburg amplitude equa-
tions [11,12], arrays of discrete oscillators [13], reaction-
diffusion systems [14–18], surface reactions [19,20] and
electro-chemical systems [21].

In bistable semiconductor systems the global coupling
represents an inherent feature of spatio-temporal dynam-
ics of the current density patterns (e.g., current fila-
ments [22], fronts and pulses [23]). The mechanism of this
coupling is as follows. For any evolution of the current den-
sity pattern which is accompanied by the variation of the
total current through the device, the voltage drop at an ex-
ternal load and/or internal series resistance changes. That
causes a variation of the voltage u dropping across the de-
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vice which usually characterizes the global excitation level
of the bistable semiconductor system. This type of feed-
back is well-known with respect to stationary [22,24–26]
and spiking [27,28] current filaments.

In this article we study the effect of global coupling
on the propagation of lateral current density fronts. Ex-
citation of such fronts, propagating in the direction per-
pendicular to the direction of the current flow, is possible
for systems with bistable current-voltage characteristics
if the low current state and the high current state coex-
ist in a certain interval of the voltage u. Such bistabil-
ity may be associated either with an S- or a Z-shaped
current density versus voltage characteristic (Fig. 1) [29].
An S-shaped characteristic represents a classical example
of bistability in both bulk semiconductors (e.g., due to
an overheating instability [24] or impact ionization break-
down [22]) and layered semiconductor structures (in p-i-
n-diodes [30], avalanche transistors [31], heterostructure
hot-electron diodes (HHED) [27,32,33], p-n-p-n- [34] and
p-n-p-i-n-multilayered structures [35,36]). The S-shaped
characteristic also includes the whole family of switch-
ing devices of modern electronics (thyristors, MOSFET,
etc.) [37]. The Z-shaped bistability has only recently re-
ceived attention; it occurs, e.g., in double barrier resonant
tunneling structures (DBRT) [38] and gate-driven p-n-p-n-
structures [39]. Transverse current density fronts in DBRT
have recently been discussed in [40,41]. S- and Z-type sys-
tems constitute the major classes of bistable semiconduc-
tors. The aim of this article is to reveal similarities and
differences between globally coupled dynamics of lateral



158 The European Physical Journal B

4443 45 46

J

u
uh uth

0

0.025

0.05

0.075

9 10 11
0

2

4

6

8

u

J

uh uth

Fig. 1. (a) S-shaped and (b) Z-shaped current-voltage characteristics J(u). The threshold voltage uth and the holding voltage
uh mark the boundaries of the bistability domain. The characteristics are calculated (a) for the heterostructure hot electron
diode (HHED) (see Eq. (6), T = 0.05) and (b) for the double barrier resonant tunneling structure (DBRT) (see Eq. (7), the
numerical parameters are given in the Appendix).
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Fig. 2. Sketch of the bistable semiconductor element and the
external circuit (bias U0, load resistor R, capacitor Cext). The
GaAs/AlGaAs heterostructure hot electron diode (HHED) is
shown as an example. The cathode (K) and anode (A) contacts
are equipotential surfaces, and therefore the voltage u(t) across
the device is independent of x and y. An inhomogeneous cur-
rent density distribution J(x) corresponding to a front propa-
gating in lateral x-direction is shown as an inset.

current density patterns for these two classes of bistable
systems and illustrate these findings with two significant
examples, viz. the HHED and the DBRT.

We consider one-dimensional fronts propagating along
the x-axis in long, narrow samples as sketched in Fig-
ure 2, where the second transverse dimension Ly (along
the y-axis) is so short that pattern formation cannot de-
velop. For a wide class of semiconductor systems the inter-
nal state can be characterized by a single variable a(x, t)
which corresponds to the internal degree of freedom rele-
vant for the bistability. The physical meaning of the vari-
able a might be a concentration of excess carriers [22],
electron temperature [24,25], interface charge density [27],
or the electric potential drop across one of the pn junc-
tions [31,34], depending upon the specific transport mech-
anism. The reduced dynamical description in terms of this

variable can be derived from a full 3D transport model,
the Poisson equation and continuity equations via adia-
batic elimination of fast variables as done, for instance,
in [24,27,31,34,35,40,41] for various semiconductor sys-
tems. This equation takes the form of a reaction-diffusion
equation

τa
∂a(x, t)
∂t

= l2(a)
∂2a(x, t)
∂x2

+ f(a(x, t), u(t)). (1)

Here τa and l are the relaxation time and diffusion length
of the variable a, respectively. Generally, the combination
of lateral diffusion and drift (due to the lateral electrical
field induced by an inhomogeneous charge distribution)
effectively results in a term with a-dependent diffusion co-
efficient D(a) ≡ l2(a)/τa [29,40–42] (see also Appendix).
Here for simplicity we set l = const. We assume passive
boundaries described by Neumann boundary conditions
for a(x, t)

∂a(0, t)
∂x

=
∂a(Lx, t)

∂x
= 0. (2)

The temporal dynamics of the voltage u(t) across the de-
vice is described by Kirchhoff’s equation for the external
circuit:

τu
du
dt

= U0 − u(t)−RLy
∫ Lx

0

J(a, u)dx,

τu ≡ RC, C ≡ Cext + Cint, (3)

where J(a, u) is the current density in a cross-section of
the system, which is determined locally by the internal
variable a and the voltage drop u, U0 is the applied bias
voltage, R is the load resistance, Cint is the internal differ-
ential capacitance of the sample, Cext is the capacitance
in the external circuit (see Fig. 2). Equation (3) describes
the global constraint imposed upon the internal dynam-
ics of the current density pattern by the external circuit.
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Fig. 3. The local kinetic function f(a, u) as a function of the
internal variable a for u < uh (curve 1), uh < u < uth (curve
2), and u > uth (curve 3). The model of the heterostructure hot
electron diode (see Eq. (6)) where large a corresponds to small
values of the current density J is used as numerical example
(T = 0.05).

Note that in contrast to the case considered in [14,18,25,
43] this constraint has the form of a dynamical equation
for the global excitation parameter u.

The local kinetic function f(a, u) is a non-monotonic
function of a which for uh < u < uth has three zeros
a1 < a2 < a3 reflecting the bistability (Fig. 3). For the
homogenous steady state, the local dependence a(u) is
calculated from the null-isocline f(a, u) = 0 and inserted
into J(a, u) in order to determine the local current den-
sity as a function of the voltage j(u) ≡ J(a(u), u). Here we
restrict ourselves to the case where the resulting current-
voltage characteristic is S- or Z-shaped. We denote the
current density in the high conductivity and low conduc-
tivity states by Jon and Joff , respectively. The value a2

corresponds to the state on the intermediate branch of the
current-voltage characteristic. The higher value of a does
not necessarily correspond to the higher value of the cur-
rent density J and both situations (a1 → Joff , a3 → Jon)
and (a1 → Jon, a3 → Joff) are possible in different sys-
tems.

In the following we assume that t and x are measured
in units of τa and l, respectively, (t→ t/τa, x→ x/l) and
rewrite equations (1), (3) as

∂a

∂t
=
∂2a

∂x2
+ f(a, u), (4)

ε
du
dt

= U0 − u− r〈J(a, u)〉,

ε ≡ τu
τa
, r ≡ RLxLy, 〈J〉 ≡ 1

Lx

∫ Lx

0

Jdx. (5)

We aim to describe the universal features of globally cou-
pled dynamics of current density fronts in systems with
S- and Z-shaped current-voltage characteristics and gen-
erally do not specify the dependencies f(a, u) and J(a, u)
which underly these characteristics. In the figures we use
two timely semiconductor devices – the heterostructure
hot electron diode (HHED) and the double barrier reso-
nant tunneling structure (DBRT) – as examples of S- and

Z-type bistabilities, respectively. For the HHED the in-
ternal variable a has the meaning of an interface charge
density; the local kinetic function f(a, u) and the current
density J(a, u)

f(a, u) =
u− a

(u− a)2 + 1
− Ta, J(a, u) = u− a (6)

have been derived in [27]. These dependencies result in an
S-shaped current-voltage characteristic as shown in Fig-
ure 1a. All variables in this model are dimensionless. We
refer to [27] for physical scales and for details of the semi-
conductor transport model. For the DBRT the parameter
a is the electron concentration in the well. The local ki-
netic function f(a, u) and the local current density J(a, u)
to be used in equations (1, 3) are derived in the Appendix
for the case of sequential tunneling

f(a, u) =
1
e

(Jew(a, u)− Jwc(a)),

J(a, u) =
1
2

(Jew(a, u) + Jwc(a)). (7)

The emitter-well and the well-collector current den-
sities Jew and Jwc, respectively, are given by equa-
tions (A.6, A.7). The corresponding Z-shaped current-
voltage characteristic is shown in Figure 1b. For both mod-
els we use dimensionless variables throughout the paper.

The paper is organized as follows. In Section 2 we
consider self-similar front propagation as it occurs in the
voltage-controlled regime and focus on the dependence of
the front velocity v upon the applied voltage u. Section 3
is devoted to the globally coupled dynamics. Here we con-
sider the regimes corresponding to a conventional positive
load resistor in the external circuit as well as the situation
when the system is operated via an active external circuit.
In Section 4 we discuss and summarize the obtained re-
sults.

2 Front velocity as a function of the applied
voltage

Let us consider first the case of the voltage-driven circuit
u = const. In this case the front between two stationary
homogneous states Jon(u) and Joff(u) propagates in a self-
similar way with constant velocity v:

J(x, t) = J0(x− vt),
J0 → Jon, Joff for x→ 0, Lx. (8)

Here v > 0 holds for hot fronts corresponding to the prop-
agation of the high current density state into the low cur-
rent density state, and v < 0 holds for cold fronts cor-
responding to the propagation of the low current density
state into the high current density state. Since the cur-
rent density J(x, t) itself does not represent an indepen-
dent variable it should be expressed through the order
parameter a(x, t) and the applied voltage u(t) according
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to J(x, t) = J (a(x, t), u(t)). For u = const. the equivalent
description in terms of a is given by

a(x, t) = a0(x− vt), a0 → aL, aR for x→ 0, Lx,
(9)

where the asymptotic values aL, aR should be chosen as
a1 or a3 according to the asymptotic values for J :

Jon = J(aL, u), Joff = J(aR, u). (10)

The front is described by equation (4) and corresponds to
the propagation of a stable state into a metastable state.
Relaxation of the initial profile to the asymptotic solu-
tion a0(x − vt) occurs exponentially fast [44]. It follows
from equation (4) that the front width Wf is close to
Wf ≈ (∂f/∂a)−1. We assume Wf � Lx which justifies
that the boundary conditions (8, 9) are defined on the
interval [0, Lx] instead of (−∞,+∞). In the co-moving
frame equation (4) takes the form

d2a0(x)
dx2

+ v
da0(x)

dx
+ f(a0, u) = 0. (11)

Multiplying equation (11) by da0/dx and integrating
over

∫ Lx
0 dx we obtain the general expression for the

front velocity [1]

v(u) =
A(u)
B(u)

, A(u) ≡
∫ aR

aL

f(a, u)da,

B(u) ≡
∫ Lx

0

(da0/dx)2dx. (12)

Since B > 0 the direction of the front propagation is de-
termined by the sign of A(u): we have hot fronts with
v > 0 for A(u) > 0 and cold fronts with v < 0 for
A(u) < 0. It can be readily seen that at the bifurcation
points u = uh and u = uth where a new state emerges
with increase or decrease of the control parameter u, re-
spectively, the function f(a, u) has a fixed sign on the
whole interval [a1, a3]. The sign of A(u) depends on which
of the two states a1, a3 experiences the bifucation but is al-
ways such that the “old” state propagates into the “new”
state. Therefore for S-type systems we predict hot and cold
fronts for u = uh and u = uth, respectively, whereas for Z-
type systems we expect cold and hot fronts for u = uh and
u = uth, respectively. For a certain value uco between these
points A(uco) = 0 and the front has zero velocity. Assum-
ing monotonicity, we conclude that the v(u)-dependencies
obtained for the HHED and DBRT by direct numerical
simulations (Figs. 4a and 4b) are qualitatively the same
for all bistable systems with S- and Z-shaped character-
istics. Note that these dependencies look similar but the
direction of the front propagation is inverted.

At u = uh, uth the intermediate value a2 coincides with
a1 or a3 and the local kinetic function is tangent to the
line f = 0 for a = a2. Our numerical simulations show
that |dv/du| =∞ at these points (see also [39]). We pro-
pose that this is a universal feature of the v(u) dependence
caused by the fact that |dB/du| = ∞ due to the diver-
gence |daL,R/du| =∞ at the bifurcation point.

In the (〈J〉, u)-phase plane the trajectories correspond-
ing to self-similar front propagation are represented by
straight vertical arrows (Figs. 4c and 4d). The phase flow
is directed up and down for hot and cold fronts, respec-
tively. In a large system (Lx � Wf ) the line u = uco

exactly corresponds to stationary fronts, or kinks. In a
finite-size system the branch of stationary kinks slightly
deviates from the vertical line in such a way that the
sign of its differential conductance coincides with the dif-
ferential conductivity of the intermediate branch of uni-
form states, e.g., we have negative differential conductance
(NDC) for S-shaped bistability and positive differential
conductance (PDC) for Z-shaped bistability (see Figs. 4c
and 4d). Let us support this observation by the follow-
ing analytical arguments. The differential conductance of
both homogeneous and inhomogeneous states a0(x)

σd ≡ (LxLy)
d〈J(a, u)〉

du
= (LxLy)

(〈
∂J

∂u

〉
+
〈
∂J

∂a

δa

δu

〉)
(13)

can be represented as (see [26])

σd = σu − (Lx Ly)
∑
m

〈(∂f/∂u)Ψm〉〈(∂J/∂a)Ψm〉
λm

,

σu ≡ (Lx Ly)
〈
∂J

∂u

〉
> 0, (14)

where σu denotes the differential conductance for the fixed
internal parameter a, Ψm and λm are eigenmodes and
eigenvalues of the corresponding stationary state, ∂f/∂u
and ∂J/∂a are calculated at the stationary solution a0(x).
In nonlinear systems the main contribution to the differ-
ential conductance is due to the response δa of the internal
parameter upon the variation δu of the applied bias, and
therefore generally |σd| � σu. The stationary front experi-
ences a weak translation instability: this implies that only
the first eigenvalue λ1 is positive, |λ1| � |λm| for m > 1,
and the “ground-state” eigenmode Ψ1 ≥ 0 corresponds to
translation [22,25,26]. Therefore σd is determined solely
by the first term in the sum in equation (14). For the ho-
mogeneous state a0 = a2 on the intermediate branch of
the current-voltage characteristic the eigenmodes Ψm are
given by Ψm(x) = cos(π(m − 1)x/Lx), λ1 = ∂f/∂a > 0
and ∂f/∂u, ∂J/∂a = const. Therefore for m > 1 all terms
in the sum in equation (14) are equal to zero. Thus, for
both stationary fronts a0(x) and the homogenous states
a0 = a2 = const. we have

σd ≈ (Lx Ly)
〈(∂f/∂u)Ψ1〉〈(∂J/∂a)Ψ1〉

λ1
,

Ψ1 ≥ 0, λ1 > 0 (15)

(note that Eq. (15) is neither applicable to narrow fil-
aments nor in the vicinity of the turning points u =
uh, uth). According to equation (15) sgn{σd} is deter-
mined by sgn {∂f/∂u} and sgn {∂J/∂a}. Assuming that
the functions ∂f/∂u and ∂J/∂a are of fixed sign, which is
usually the case, we conclude that sgn {σd} for stationary
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Fig. 4. Self-similar front propagation in the voltage-controlled regime u = const. for S-shaped (a, c) and Z-shaped (b, d)
bistability. The front velocity v is shown in (a, b) as a function of the applied voltage u. The phase flow in the (〈J〉, u) plane
for self-similar front propagation in the voltage-controlled regime is shown in (c, d). The thick solid line depicts the local
current-voltage characteristic of uniform states. The thin solid line at u = uco corresponds to a stationary front for Lx � Wf ,
the thick dashed line corresponds to the stationary fronts for finite system size Lx ≈ 5Wf . The numerical parameters of the
HHED (T = 0.05) and the DBRT (see Appendix) are used in (a, c) and (b, d), respectively.

fronts (or, more generally, for wide filaments) and for ho-
mogeneous states on the intermediate branch is the same.

The deviation of the thick dashed curve from the ver-
tical line at u = uco reflects the attraction of the sys-
tem boundaries in a finite-size system which causes a
translation instability of a stationary front (λ1 > 0) in
the voltage-controlled regime. However, this instability
can hardly be detected in numerical simulations even for
Lx > 10Wf due to the pinning of fronts (e.g., see [45])
caused in this case by the discreteness of the grid. In real-
istic systems of large transverse dimensions the front sta-
bility in the voltage-driven regime is determined by struc-
tural imperfections rather than by boundaries effects [26].
However, the sign of the differential conductance will be
shown to have a crucial impact on the stability in presence
of global coupling and will be discussed at length in the
next sections.

3 Globally coupled front dynamics

3.1 Reduced equations of motion

The total current through a semiconductor element de-
pends on the front position w, and in presence of a global
constraint the control parameter u changes as the front
propagates. Since the local kinetic function f(a, u) and the
asymptotic values aL, aR in the globally coupled regimes
are not constant, the self-similarity of front propagation
is broken. Parametrizing the front by its position w(t)

and the values in the two phases aL(t) and aR(t) we can
describe the front dynamics by ordinary differential equa-
tions:

ẇ = v {a(x, t), u(t)} , (16)
ȧL(t) = f (aL(t), u(t)) , (17)
ȧR = f (aR(t), u(t)) , (18)

εu̇ = U0 − u

− r
[
J(aL(t), u(t))

w(t)
Lx

+J(aR(t), u(t))
(

1−w(t)
Lx

)]
.

(19)

Generally, the front velocity has a functional dependence
on the instantaneous front shape and the instantaneous lo-
cal kinetic profile (16) which implies that the front ansatz
given by (16–18) is not complete. This difficulty can be
overcome if the time hierarchy of the three following re-
laxation processes is properly taken into account. First,
the front shape relaxes to the quasistationary shape cor-
responding to the local kinetic function f(a, u) and instan-
taneous asymptotic values aL and aR. Second, aL and aR

relax to the quasistationary values defined by f(a, u) = 0.
Third, the applied voltage u tends to the value U0−r〈J(t)〉
given by the load line. It has been argued in [14,39] that
the two first relaxation processes are fast with respect to
the characteristic time Wf/v it takes for the front to ad-
vance by its own width Wf . In this case the actual velocity
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v is determined by the instantaneous value of u and coin-
cides with the velocity of self-similar propagation at this
value of u. Then equations (16–19) can be considerably
simplified:

ẇ = v(u), (20)

εu̇ = U0 − u− r
[
Jon(u)

w(t)
Lx

+ Joff(u)
(

1− w(t)
Lx

)]
.

(21)

The relaxation time ε = τu/τa of the variable u is con-
trolled by the external circuit (τu = RC). For C → 0 the
feedback upon the front dynamics is instantaneous, for
C → ∞ the feedback vanishes and the front propagates
as in the voltage-controlled case.

We have confirmed the validity of reduction (20, 21)
by direct numerical simulations of the full equations (1, 3)
in comparison with the predictions of the reduced
model (20, 21). The deviation of the front velocity has
always been found to be less than 0.5%.

3.2 Global coupling via passive external circuit (R > 0)

Qualitatively, the type of feedback on front dynamics is de-
termined by the slope of the v(u)-dependence and the sign
of the load resistance R in the external circuit. The prop-
agation of hot fronts is accompanied by an increase of the
total current and according to equation (3) for R > 0 the
voltage u decreases. Taking into account that dv/du > 0
for S-type systems and dv/du < 0 for Z-type systems
(Figs. 4a and 4b), we conclude that the front velocity de-
creases and increases, respectively. Similar reasoning holds
for cold fronts. This results in negative feedback on front
dynamics for S-type systems and positive feedback for Z-
type systems.

In Figures 5 and 6, we present numerical solutions of
equations (4, 5) for R > 0 and sufficiently small ε = τu/τa.
Since in this case the relaxation of u is fast, the trajecto-
ries in the (〈j〉, u)-plane exactly follow the load lines. The
front propagation is decelerated for the S-system and ac-
celerated for the Z-system. For the load line which inter-
sects the line u = uco the system possesses a fixed point
corresponding to a stationary front at a certain position
w = w0 (Figs. 5 and 6, trajectories 1, 4). This point is a
stable node for the S-system (Fig. 5) and a saddle-point for
the Z-system (Fig. 6). A general stability analysis of trans-
verse current patterns has been recently performed [26].
The stability criterion is given by

−σu +
Cλ1

τa
< R−1 < −σd, C > 0, (22)

where λ1 > 0 is the eigenvalue of the unstable mode cor-
responding to translation. According to (22) only fronts
with σd < 0 can be stabilized for R > 0. That implies
that stationary fronts in Z-systems driven via an ordi-
nary passive external circuit with R > 0 are never stable.

The upper bound of the criterion (22) corresponds to the
saddle-node bifurcation where the system has one real pos-
itive eigenvalue. That indicates that the stationary front
has lost stability with respect to the translation mode,
and monotonic front propagation will switch the system
to the homogeneous state. The lower bound corresponds
to an oscillatory instability where a pair of complex con-
jugate eigenvalues crosses the imaginary axis. Note that
the main contribution to the differential conductivity of
the stationary front comes from the shift of the front and
therefore generally |σd| � σu.

With increase of ε ≡ τu/τa the system experiences a
transition from instantaneous feedback to delayed feed-
back. Now the slow relaxation of u results in deviations of
the trajectories from the load line. For S-shaped charac-
teristics the fixed point evolves from a stable node to a sta-
ble focus (Fig. 7). This corresponds to oscillatory transient
processes leading to the steady state (Fig. 7, trajectories 1,
4). For sufficiently slow feedback the front propagation be-
comes self-similar as in the case of the voltage-controlled
conditions. For the stationary pattern the increase of ε
eventually leads to a violation of the left inequality in (22)
and the fixed point becomes an unstable focus reflecting
an oscillatory instability of the stationary front (see [39]
for an example of such behaviour). However, since this in-
stability is caused by the interaction of the front wall with
the boundaries it represents essentially a boundary effect
which is not relevant for the front dynamics in a large sys-
tem (Wf � Lx). For Z-systems the phase portrait does
not undergo qualitative changes with increase of ε and the
stationary point always remains a saddle-point.

3.3 Global coupling via active external circuit (R < 0)

The type of feedback can be changed if the system is op-
erated by an active circuit simulating a negative load re-
sistance R < 0. Such a circuit has been implemented in
[46] in order to stabilize the uniform states corresponding
to the intermediate branch of the DBRT current-voltage
characteristic and can also be used in studies of lateral
patterns. Note that to secure τu = RC > 0 such a circuit
should also provide C < 0.

For R < 0 the propagation of a hot front is accom-
panied by an increase of u. That results in positive feed-
back for S-systems and negative feedback for Z-systems.
The last case is most interesting here since efficient con-
trol over front propagation and stabilization of lateral pat-
terns becomes possible. The front dynamics in a Z-system
for R < 0 and instantaneous feedback is illustrated in
Figure 8. Now the front propagation in the Z-system is
decelerated. For C < 0 the stability criterion takes the
form [26]

−σd < R−1 < −σu +
Cλ1

τa
, C < 0. (23)

In equation (23) the lower and upper bounds correspond
to a saddle-node bifurcation and oscillatory instabilities,
respectively. According to (23) a stationary pattern with
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Fig. 5. Globally coupled dynamics of lateral current density fronts in an S-system (HHED) for positive load R > 0 and
instantaneous feedback. (a) Phase portrait including the S-shaped current-voltage characteristic (solid line) with different load
lines (dotted). The front dynamics is indicated by the trajectories 1, 2, 3, 4. The fixed point at u = uco is a stable node, and
corresponds to a stationary front. (b, c) Decelerated cold fronts evolving either to a stationary front (b; trajectory 1) or to the
uniform off-state (c; trajectory 2). (d, e) Decelerated hot fronts evolving either and to a stationary front (e; trajectory 4), or
to the uniform on-state (d; trajectory 3). Parameters of the load lines: U0 = 11.5, r = 0.42 for trajectories 1 and 4, U0 = 9.4,
r = 0.15 for trajectory 2 and U0 = 11.0, r = 0.15 for trajectory 3; ε = 100, Lx = 1000.

Fig. 6. Globally coupled dynamics of lateral fronts in a Z-system (DBRT) for positive load R > 0 and instantaneous feedback.
(a) Phase portrait including the Z-shaped current-voltage characteristic (solid line) with different load lines (dotted). The front
dynamics is indicated by the trajectories 1, 2, 3, 4. The fixed point at u = uco is a saddle-point. The regimes corresponding to
the trajectories 1 and 4 can be realized only for special initial conditions. (b, c) Accelerated hot fronts for trajectories 1 (b)
and 2 (c). (d, e) Accelerated cold fronts for trajectories 3 (d) and 4 (e). Parameters of the load lines: U0 = 45.75, r = 31.25 for
trajectories 1 and 4; U0 = 44.5, r = 15.62 for trajectory 2, U0 = 45.75, r = 15.62 for trajectory 3; ε = 10−12, Lx = 2750.

σd > 0 can be stable for R < 0, C < 0. For sufficiently
small C the fixed point is a stable node as in Figure 8.
Increase of ε = τu/τa leads to oscillatory motion as shown
in Figure 9, the fixed point becomes a stable focus. It is
readily seen that the front behavior in Z-type systems for
R < 0 is qualitatively the same as in S-type systems for
R > 0.

However, the implementation of the active external cir-
cuit leads also to some new regimes which have no ana-
logue for R > 0. First of all, if a spatially extended bistable

element is operated via an active external circuit temporal
instabilities can be caused by the negative differential con-
ductivity of this circuit itself. Indeed, for R−1 > −σu the
condition for an oscillatory instability is fulfilled even for
C = O. This instability is not related to front oscillations
but represents circuit induced oscillations. These oscilla-
tions can be excluded by choosing a negative relaxation
time in the external circuit.

For R−1 > σu, τu < 0, R < 0, C > 0 we can also meet
a new situation if the slope of the load line is smaller than
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Fig. 7. Oscillatory dynamics of globally coupled fronts in an S-system (HHED) in the case of delayed feedback (R > 0).
(a) Phase portrait including the S-shaped current-voltage characteristic (solid line). The load lines (dotted) and the initial
conditions are as in Figure 5, ε = 104. In contrast to Figure 5 the trajectories 1, 2, 3, 4 deviate from the corresponding load
lines due to the delay in the feedback. The fixed point at u = uco is a stable focus. (b, c) Oscillatory slowing down of the cold
(b) and hot (c) front corresponding to trajectories 1 and 4, respectively.

Fig. 8. Globally coupled dynamics of lateral fronts in a Z-system (DBRT) operated via an active external circuit with r < 0,
ε > 0 (R < 0, C < 0). The relaxation time ε = 10−12 corresponds to instantaneous feedback. (a) Phase portrait including the
Z-shaped current-voltage characteristic (solid line) and load lines (dotted). The fixed point at u = uco is a stable node. (b, c)
Decelerated hot fronts evolving either to the uniform on-state (b; trajectory 1) or to a stationary front state (c; trajectory 2). (d,
e) Decelerated cold fronts evolving either to a stationary front state (d; trajectory 3) or to the uniform off-state (e; trajectory 4).
Parameters of the load lines: U0 = 43.25, r = −15.62 for trajectory 1; U0 = 43, r = −34.37 for trajectories 2, 3; U0 = 44.5,
r = −15.62 for trajectory 4.

Fig. 9. Oscillatory dynamics of current density fronts in a Z-system (DBRT) for R < 0, C < 0 in the case of delayed feedback
ε = 10−9. (a) Phase portrait including the Z-shaped current-voltage characteristic (solid line). The load line (dotted) corresponds
to U0 = 43, r = −34.37. (b, c) Oscillatory slowing down of the cold (b) and hot (c) front corresponding to the trajectories 1
and 2, respectively.
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the slope of the on- and off-branches of the current-voltage
characteristic. Generally, these regimes are of limited in-
terest since: (i) being close to the current-controlled con-
dition they are not favorable for front propagation since
the load line does not connect on- and off-branches of
the current-voltage characteristic within the bistability
regime; (ii) the global dynamics becomes unbounded in
this case as an effect of the active circuit. Let us note that
for R−1 > σu the propagation of a hot or cold front can
be accompanied by a decrease or increase, respectively, of
〈J〉. Indeed, eliminating u adiabatically from (20, 21), by
direct calculation we obtain:

dJ
dt

=
1
Lx

Jon(u)− Joff(u)
1 +Rσu

v(t). (24)

Therefore if (1 + Rσu) < 0 we have dJ/dt < 0 for v >
0. This regime, where the type of feedback may become
indeterminate, has been studied in [39] for the model of a
gate-driven p-n-p-n-structure.

4 Discussion and conclusion

In this article we have studied the dynamics of lateral cur-
rent density fronts in bistable semiconductor systems with
S- and Z-shaped current-voltage characteristics (Figs. 1
and 2). Both hot fronts (v > 0, high current state propa-
gates into low current state) and cold fronts (v < 0, low
current state propagates into high current state) can be
excited in these systems for uh < u < uth. In the voltage
controlled case the front propagates in a self-similar way
and the direction as well as the absolute value of the ve-
locity can be controlled by varying u (Figs. 4a and 4b).
The front has zero velocity for a certain voltage uco deter-
mined by the equal areas rule A = 0 (see Eq. (12)). The
direction of the front propagation is different for S- and
Z-type systems, which is reflected by the different sign of
the slopes of the v(u)-dependence.

In the presence of global coupling via an external cir-
cuit the voltage u applied to the structure varies as the
front propagates due to the dependence of the total cur-
rent on the front position. This results in a feedback upon
the front dynamics. The type of this feedback is deter-
mined by the slope of the v(u)-dependence and the type
of external load. For positive external loadR > 0 the feed-
back is negative for S-systems and positive for Z-systems
(Figs. 5 and 6). This results in deceleration and accelera-
tion of the front propagation, respectively. The type of the
feedback can be reversed if the system is operated via an
active external circuit simulating negative load R < 0 and
capacitance C < 0 (the latter is required in order to keep
the relaxation time RC positive). The case of negative
feedback (for Z-systems) is of most interest since decel-
eration and efficient control over fronts in Z-systems be-
comes possible (Fig. 8). The propagation of globally cou-
pled fronts is monotonic as long as the relaxation time of
the external circuit τu = RC is sufficiently small and the
feedback upon the front dynamics is instantaneous (Figs. 5
and 6). Delayed negative feedback can result in oscilla-
tory slowing down in both S- and Z-systems as shown in

Figure 7 and Figure 9, respectively. Generally, we con-
clude that S- and Z-systems are dual and the behaviour
of S-type systems for R > 0 or R < 0 is qualitatively
the same as the behaviour of Z-type systems for R < 0
or R > 0, respectively. The heterostructure hot electron
diode (S-system) and the double-barrier resonant tunnel-
ing structure (Z-system) which we have used to illustrate
our findings serve as prominent examples of semiconduc-
tor heterostructures falling into these two classes.

Despite of the fact that globally coupled front propa-
gation is not self-similar, due to the fast relaxation of the
front profile the front velocity is determined by the instan-
taneous value of the voltage u with good accuracy. There-
fore the equations of motion can be reduced to (20, 21).

The type of the feedback upon propagating fronts is
closely related to the stability of stationary lateral pat-
terns considered in [25,26]. It is known that in the presence
of global coupling the stability of an inhomogeneous pat-
tern (stationary lateral current density front or filament)
which has one unstable mode in the voltage controlled
regime is determined by the sign of its differential conduc-
tance. Figure 4c and 4d helps to understand the stability
criterion qualitatively. In the globally coupled regime the
stability of the steady state is determined by the projec-
tion of the phase flow onto the load line. For σd < 0 this
projection is directed towards the steady point for R > 0,
indicating stability, as it happens in S-systems, for σd > 0
this holds for R < 0, as it happens in Z-systems.

Operating the system via an active external circuit
with R < 0 results in new effects which do not exist for
conventional circuits. If a spatially extended nonlinear el-
ement is operated with a load R < 0, a temporal instabil-
ity can be induced by the active circuit itself. Therefore
such circuits should provide C < 0 in order to exclude
circuit-induced relaxation-type oscillations in the regimes
considered above.

Globally coupled dynamics of travelling pulses in ex-
citable media has recently been studied in [18]. Global
coupling influences the velocity of a travelling pulse but
the self-similar character of the motion remains. As it
has been shown here in bistable media the global cou-
pling completely destroys the self-similarity, resulting in
accelerated, decelerated or oscillatory motion. These find-
ings have important consequences for gate-driven bistable
systems where the front dynamics experiences a feedback
from both the gate and the main external circuits. Gen-
erally, these systems should be considered as bistable me-
dia with two global constraints [43]. Recently it has been
shown that gate-driven p-n-p-n-structures possess an Z-
shaped and an S-shaped current-voltage characteristics
in the gate (cathode-gate) and the main (cathode-anode)
circuits, respectively. The interplay between the positive
feedback via the gate circuit (activatory global constraint)
and negative feedback via the main circuit may result in
large-amplitude self-sustained oscillations of the front [47].

It is important to note that in semiconductor switch-
ing devices with S-shaped current-voltage characteristics
(e.g., in thyristors) turn-on and -off can often be triggered
locally via the propagation of current density fronts [42].
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Fig. 10. Schematic potential profile of the double barrier res-
onant tunneling structure.

Since the device operation implies not only switching from
a low current state to a high current state but also from
a high voltage state to a low voltage state, the semicon-
ductor device essentially interacts with the external cir-
cuit during this transient process and the propagation of
the current density front experiences a strong global cou-
pling. It is not sufficient to treat only self-similar prop-
agating fronts in this case. Additionally, nonuniform at-
tractors (stationary filamentary states) of the transient
process should be properly taken into account [34]. The
concepts of globally coupled front dynamics which we have
developed here provide an adequate description of inho-
mogenous switching processes in these devices.

Appendix A: Model for the double-barrier
resonant tunneling diode

The intrinsic bistability of the double-barrier resonant
tunneling diode (DBRT) occurs due to the dynamical
charge accumulation within the potential well. The built-
up charge leads to an electrostatic feedback mechanism
which increases the energy of the quasi-bound state sup-
porting resonant tunneling conditions for higher applied
voltages. This may result in bistability and hysteresis
where a high current and a low current state coexist for
the same applied voltage u and the current voltage charac-
teristic becomes Z-shaped rather than the conventional N-
shaped characteristic associated in general with resonant
tunneling [38]. Recently it has been pointed out [40,41]
that such bistability provides a basis for lateral pattern
formation in the DBRT. In this Appendix we derive a
nonlinear reaction-diffusion model for the DBRT in the
bistable regime which is used as an example of a system
with Z-shaped current-voltage characteristic in our simu-
lations of globally coupled front dynamics.

We consider a symmetric resonant tunnelling structure
and assume incoherent sequential tunneling for the verti-
cal (along z-axis) transport (Fig. 10). We characterize the
internal state of the device by the built-up electron con-
centration n(x, y, t) in the well. The continuity equation

for n(x, y, t) has the form

∂n

∂t
+

1
e
∇⊥J⊥ =

1
e

(Jew(n,U)− Jwc(n)) ,

∇⊥ ≡ ex
∂

∂x
+ ey

∂

∂y
, (A.1)

where e < 0 is the electron charge, U is the applied volt-
age, Jew(x, y) and Jwc(x, y) are the local densities of the
emitter-well and the well-collector currents, respectively,
J⊥ is the density of the transverse current in the well.

The emitter-well current density Jew can be evaluated
up to lowest order in the coupling in the spirit of [48]. As-
suming conservation of the transverse momentum k dur-
ing the tunneling process and neglecting the broadening
of the states in the emitter we obtain

Jew =
2e

LxLy

∑
k

∑
q

2π
~
|H2

q |Θ(EF −Ek −Eq)
1

2π

×Aw(Eq +Ek −Ew − eφw,k)(1− fw), (A.2)

where q and k are vertical and transverse wave vectors of
the electrons in the emitter, respectively. Eq = ~2q2/2m
and Ek = ~2k2/2m are the corresponding kinetic ener-
gies (here m is the effective electron mass) and Hq is the
matrix element of the emitter-well transition. Θ(E) is the
step function describing the occupation of the emitter up
to the Fermi energy EF for zero temperature. Aw(E,k) is
the spectral function of the bound state in the well (bind-
ing energy Ew), which has still the transverse degree of
freedom k. φw is the electrical potential at the bottom of
the well (the potential of the emitter is taken to be zero).
Finally fw is the filling factor for the states in the well,
which we estimate by a homogeneous distribution of the
electron density up to the Fermi energy

fw(n) =
n

ρ0(EF −Ew − eφw)
, (A.3)

where ρ0 ≡ m/π~2 is the two-dimensional density of
states. In the following we assume Aw(E,k) = Γ/[(E −
Ek)2 + Γ 2/4], where Γ ≡ ΓL + ΓR + Γscatt = const.
is the total broadening of the quasibound well state re-
sulting from the escape via emitter-well barrier, well-
collector barrier and scattering in the well, respectively.
Then we obtain in the continuum limit (

∑
k

∑
q →

LxLyLz/(2π)3
∫

d2k
∫

dq):

Jew =
e

2π~
ρ0

∫ EF

0

dEq(EF −Eq)
2m|H2

q |Lz
~2q

× Γ

(Eq −Ew − eφw)2 + Γ 2/4
(1− fw). (A.4)

In the following ΓL ≡ 2m|H2
q |Lz/(~2q) is taken to be con-

stant for simplicity.
For n = 0 the energy of the bottom of the well in a sym-

metric structure is given by φw = −U/2. Due to the built-
up charge φw depends also on the electron concentration
n(x, y) in the well. Assuming that transverse variations
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of n(x, y) are smooth in a sense that their characterstic
wavelength is much larger than the effective thickness of
the structure d, we can represent the corresponding cor-
rection locally as ∆φw(n) = en/Cint, where Cint is an
effective capacitance per area of the well. This yields (see
[40,41])

φw = −U
2

+
en

Cint
, Cint =

2εε0
d
, (A.5)

where ε and ε0 denote the relative and absolute permit-
tivity, respectively.

With these ingredients the evaluation of equation (A.4)
gives the final formula

Jew(n,U) =
e

~
ΓLρ0

[
∆(n,U)

arctan(2∆/Γ )− arctan(2Ω/Γ )
π

− Γ

4π
ln
(
∆2 + (Γ/2)2

Ω2 + (Γ/2)2

)]
(1− n

ρ0∆
), (A.6)

∆(n,U) ≡ EF −Ew +
eU

2
− e2n

Cint
,

Ω(n, u) ≡ eU

2
− e2n

Cint
−Ew,

where ∆ and Ω denote the energy of the quasibound state
with respect to the Fermi level and bottom of the conduc-
tance band in the emitter, respectively. Since the bottom
of the conductance band of the collector is much lower
than the quasibound state (Fig. 10) if a negative bias U
is applied, the well-collector current can be taken as pro-
portional to n

Jwc =
e

~
ΓRn, (A.7)

where ΓR/~ is the escape rate via the well-collector bar-
rier.

The transverse current in the well is described in the
drift-diffusion approximation:

J⊥ = |e|nµF⊥ − eD0∇⊥n, (A.8)

where µ and D0 are the mobility and the diffusion coeffi-
cient in the well, respectively. F⊥ = −∇⊥φw is the trans-
verse electrical field in the well. Taking into account (A.5),
we conclude that the transverse coupling in the DBRT
is effectively due to a concentration-dependent diffusion
term

J⊥ = −eD(n)∇⊥n, D(n) ≡ D0 +
|e|µn
Cint

· (A.9)

Substituting (A.9) into (A.1) we arrive at the following
reaction-diffusion equation which describes the internal
dynamics in the DBRT:

∂n

∂t
=

1
e

[Jew(n, u)− Jwc(n)] +∇⊥ [D(n)∇⊥n] . (A.10)

In the following we simplify the consideration assuming
an effective diffusion coefficient D = const. The current
densities Jew and Jwc are given by (A.6, A.7), respectively.

The dynamical equation for U has been derived in the
general form in [29] from Kirchhoff’s and Ampere’s law
with proper account taken for the displacement currents
within the semiconductor element:

RC
dU
dt

= U0 − U −R
C̃

LxLy

∫ Lx

0

∫ Ly

0

∫ d

0

dxdy dz
Jz(z)
ε(z)

,

1

C̃
=
∫ d

0

dz
LxLyε(z)

, (A.11)

where Jz(z) is the vertical component of the current den-
sity, ε(z) is the device permittivity and C̃ is an effective
intrinsic sample capacitance. For the symmetric DBRT
considered here, we have Jz(z) = Jew for 0 < z < d/2,
Jz(z) = Jwc for d/2 < z < d, and therefore we find

RC
dU
dt

= U0 − U −R
∫ Lx

0

∫ Ly

0

dxdy
Jew(n,U) + Jwc(n)

2
·

(A.12)

We use the following structural parameters: EF = 5 meV,
Ew = 40 meV, d = 20 nm, Γscatt = 1 meV, ΓL = ΓR =
0.5 meV, ε = 12, m = 0.067 (for GaAs), and transform
to dimensionless variables according to a = n/(ρ0EF),
u = eU/Γ , J̃ = ~J/(eρ0EFΓ ), t̃ = t/τa and x̃ = x/

√
Dτa

(and subsequently omit the tilda). Choosing τa = ~/Γ ,
from (A.10, A.12) we obtain the dimensionless equa-
tions (4, 5) with

f(a, u) = J̃ew(a, u)− J̃wc(a), (A.13)

J(a, u) =
J̃ew(a, u) + J̃wc(a)

2
, (A.14)

r ≡ RLxLye2ρ0EF/~. (A.15)

Consequently, in the DBRT model the units of time,
voltage and current density are τa ≈ 3.3 ps, Γ/e = 2 mV
and (eρ0EFΓ )/~ ≈ 70.2 kA/cm2, respectively. The length
scale l =

√
(Dτa) scales with the square root of the ef-

fective transverse diffusion constant D; D = 100 cm2/s,
for instance, yields l ≈ 180 nm. The stationary current-
voltage characteristic J = Jew = Jwc which results
from (A.10, A.6, A.7) is shown in Figure 1b.
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E. Schöll, Phys. Rev. E 54, 1253 (1996).
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